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On the periodic fundamental solutions of the Stokes 
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Spatially periodic fundamental solutions of the Stokes equations of motion for 
a viscous fluid past a periodic array of obstacles are obtained by use of Fourier 
series. It is made clear that the divergence of the lattice sums pointed out by 
Burgers may be rescued by taking into account the presence of the mean pressure 
gradient. As an application of these solutions the force acting on any one of the 
small spheres forming a periodic array is considered. Cases for three special types 
of cubic lattice are investigated in detail. It is found that the ratios of the values 
of this force to that given by the Stokes formula for an isolated sphere are larger 
than 1 and do not differ so much among these three types provided that the volume 
concentration of the spheres is the same and small. The method is also applied to 
the two-dimensional flow past a square array of circular cylinders, and the drag 
on one of the cylinders is found to agree with that calculated by the use of elliptic 
functions. 

1. Introduction 
The study of the flow of a viscous fluid past a periodic array of spheres is very 

important from the theoretical and practical viewpoints. As far as the author is 
aware, however, many treatments of this problem have been made only by con- 
sidering some artificial models, even in the case of the slow motion. This may be 
partly due to the fact that standard methods of constructing the solutions of the 
Stokes equations, by summing up the induced velocity of the isolated particles, en- 
counter the difficulty of divergence pointed out already by Burgers (1941). Burgers 
proposed the so-called diffuse field of force to overcome this difficulty. This idea 
is extended by Brinkman (1947, 1948) and independently by Debye & Bueche 
(1948), who considered a model consisting of a sphere separated by an infinitely 
thin shell from a porous medium. Their main concern was in the study of the 
sedimentation of suspensions and the flow through porous media. The statistical 
treatment due to Kynch (1954, 1956) using the shielded potential belongs to this 
category. 

Making use of a method analogous to the approximate method due to Wigner 
& Seitz (1933), Uchida (1949) investigated the flow past a simple cubic lattice of 
spheres. Although the satisfaction of the periodic condition is not perfect, it may 
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be regarded as one of the direct attacks on our problem. There is also Kawaguchi’s 
ingenious treatment (1958) of replacing the field by the flow past a sphere in 
a frictionless circular pipe. 

Recently, Tamada & Fujikawa (1  957) investigated the two-dimensional flow 
through an infinite row of parallel circular cylinders on the basis of Oseen’s 
equations and showed that the drag on one of the cylinders tends to the Stokes 
type in the limit of the small Reynolds numbers. Inspired by their results the 
author ( 1 9 5 8 ~ )  discussed the flow through a thin screen and obtained an exact 
solution of the Stokes equation for a periodic series of flat plates set perpen- 
dicularly to the uniform flow. Kuwabara (1958) and Miyagi (1958) also treated 
respectively the flow past a row of parallel flat plates and the flow past a row of 
circular cylinders on the basis of the Stokes equations. Making use of elliptic 
functions the author (1958b) also determined the two-dimensional flow past 
a doubly periodic array of circular cylinders. 

Taking into account these successful results it is natural for us to suspect that 
solutions for the case of an array of spheres exist and can be obtained by some 
kind of direct attack. 

In this paper periodic fundamental solutions of the Stokes equations of motion 
for a viscous incompressible fluid past a periodic array of obstacles are given by 
use of Fourier series. It is made clear that the divergence pointed out by Burgers 
may be avoided by taking into account the presence of the mean pressure gradient 
which is present in our problem. As a simple example, the flow past a cubic lattice 
of small spheres is examined for three types of lattice (simple, face-centred, body- 
centred) and the force acting on any one of the spheres is determined as a function 
of volume concentration. It is found that the ratios of the values of this force to 
that given by the Stokes formula for an isolated sphere are larger than 1 and do 
not differ much for these three types so long as the volume concentration of 
spheres is the same and small. The method is also applied to the two-dimensional 
flow past a square array of circular cylinders, and the drag on any one of the 
cylinders is found to agree with that calculated by the author (1958b), using 
elliptic functions. 

2. Basic equations and periodic fundamental solutions 

a periodic array of small obstacles with their centres at 
Let us consider the steady motion of an incompressible viscous fluid past 

r, = n,a(1)+n,a(z)+n3a(3) (n1,n2,n3 = 0, k 1, +2 ,  ...), (2.1) 

where a(”, a@) and a(3) are the basic vectors determining the unit cell of the 
array. 

According to the procedure of Lamb (1932) and Burgers (1938) the fundamental 
solutions of our problem are obtained by solving the following Stokes equation of 
motion and continuity equation 

pAV = gradp+Fz6( r - rn )  A = ax; -+-+- ax; ax; (2.2) 

(2.3) 
n 

divV = 0, 
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where V is the velocity, ,u the viscosity, p the pressure, F the force acting on one of 
the obstacles, (xl, x2,  x3)  are the Cartesian co-ordinates of the position vector r, 
and 6(r - r,) denotes Dirads delta function defined by the conditions 

and 6(r-r,) = 0 for r + r,. 

Taking into account the periodicity of the flow field we expand V and - gradp in 
Fourier series : 

(2.5) 

- gradp = x Pk e--%n@.r), (2.6) 

k = nl b(') + n2 b(') + n3 b(3) (2.7) 

k.a(i) = nj (j = 1,2 ,3) .  (2.8) 

V = x Vk e-Zni(k.r)), 

k 

k 

where 

are vectors in the reciprocal lattice, which satisfy 

Making use of (2.7) and (2.8) we find the basic vectors b(l), b(2) and b(3) in the 
reciprocal lattice to be 

where T~ = a(1). [a@) x a@)] (2.10) 

stands for the volume of the unit cell in the physical space. 

physical space, we obtain 
Multiplying (2.2) and (2.3) by e2ni(k-r)/To and integrating over a unit cell in 

(2.11) 
F 
7 0  

- 4n2,Uk2Vk = - Pk + - (k2  = k .  k), 

(k.Vk) = 0. 

Pk satisfies the relation PkXk=O, 
(2.12) 

(2.13) 

which can be proved by taking the curl of (2.6). 
We begin by considering the terms for which k = 0. Equation (2.11) yields 

F 
7 0  

P 0 -  --, (2.14) 

which means that the force acting on an obstacle is balanced by the mean pressure 
gradient of the fluid. Disregard of this relation would induce paradoxical results 
e.g. the divergence of Vo as already shown by Burgers. 

Taking the scalar product of (2.11) with k we obtain, for k =t= 0, 

1 

7 0  
(k.Pk) = -(k.F) = (k.Po) (2.15) 

or, making use of (2.12) and (2.13), 

(k =+ 0). 
(k.F)k 

Pk = 7,k2 (2.16) 
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Substitution of (2.16) in (2.11) gives 

(2.17) 

Equations (2.5) and (2.6) with (2.14) to (2.17) are the periodic fundamental 
solutions of the Stokes equations for the flow past a periodic array of obstacles. 
Their components in Cartesian co-ordinates are given by 

F,. 1 3 awl 
ro 477l=1 ‘axlaxi’ 

- (gradp)j = --- x F- 

where Sl and S, are given by 

(2.18) 

(2.19) 

(2.20) 

and may be proved to be the solutions of the following equations: 

AS, = Sl (2.21) 

AXl = -477 xd(r-rn)-- , (2.22) [. 7 0  ‘I and 

by use of finite Fourier transforms. 
It is important that El is not harmonic even in the domain excluding r,, because 

of the presence of the term 477/r0. This makes clear the reason why the standard 
method of obtaining Xl by summing up fundamental solutions of the Laplace 
equation for isolated particles has encountered difficulties. Sl is equivalent to the 
electrostatic potential of a lattice composed of positive unit charges surrounded 
by the cloud of uniform negative charge which neutralizes them. It is interesting 
to note that the presence of this uniform charge corresponds to the presence of the 
mean pressure gradient in our problem (see (2.2)) and rescues the lattice sums from 
divergence. 

3. Evald’s technique for evaluating Sl and S, 
In  order to satisfy the boundary condition on the surface of an obstacle, it is 

necessary to evaluate 8, and 8, at small values of r. A technique for this purpose 
was presented by Evald (1921) in the calculation of the Msdelung energy of the 
ionic crystals in terms of S,, and is summarized by Born & Misra (1940) in a con- 
venient form. 

We start with an integral representation for l/k2m: 

Multiplying by e-2vi(k*r) and summing with respect to k, except for k = 0,  we have 
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Let us split the integral into two parts, one to be taken from 0 to a, and the 
other from a to a, and then apply Evald's theta transformation formula 

to the integral from 0 to a, where a is a moderate constant and 

(3.4) 
0 for the three-dimensional case, 
4 for the two-dimensional case. 

n(r - rn)2 1 
We get 

- - + x' e - 2 d k .  r) $ m-1 (n&2)] , 
rOa-8+A c n $-m+&-A ( k - 1  

k40 

(3.5) 

where we have put ~3 = a/g in the first integral and /3 = a[ in the second, and $"(x) 
is the incomplete r-function 

The function $&) satisfies the recurrence formulae 

and is tabulated in Born & Ksra's paper. In  particular 

is the complementarv error function and 
A 

w e-5 
- E l ( - [ )  = s, -p 

denotes the exponential integral. 

(3.10) 

These functions tend to zero rapidly as x --f co, and 

(3.11) 
4. 2x 

q q z )  = - - 2 + - + 0 ( 2 2 ) ,  $-&) = 2 - 2 J(n-2) + 22 + O ( X 2 ) ,  4. 3 

$-I (x )  = - y-10gx+x+O(X2), $ - 2 ( ~ )  = 1 - ~ ( l - ~ - 1 0 g ~ ) + O ( ~ 2 ) ,  (3.12) 

as x -+ 0, where y = 0.577215 ... is Euler's constant. 

which are given in the following sections. 
Making use of these expressions we can evaluate the values of Sl and S,, etc., 

4. The case of a lattice of small spheres 
As an application of the fundamental solutions (2.18) and (2.19) we consider the 

case of periodic array of spheres of equal radius a which is very small compared 
with the mutual distances of the spheres. 

In  order to satisfy the remaining boundary conditions on a sphere 

V = 0 at r = J(lr12) = a, (4.1) 
Fluid Meoh. 5 21 
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we have only to know the behaviour of the fundamental solutions as r --f 0. 
Making use of (3.5) and (3.11) we obtain for S,, S, and a2S,laxjax1: 

c + O(r2),  c1 1 s, = = ;- 

s, = - g 2  ___ --- - c,+O(r2) ,  
4773Tn 2 (4.3) 

(4.4) 

where xnj and k j  denote respectively xj-component of r, and k. 
Burgers has shown that a good approximation to F can be obtained if we 

determine F from the condition that the mean velocity on the sphere vanishes, i.e. 

1 
(V) = =,/ vas = 0. (4.5) 

r=a 

Inserting (4.2) to (4.4') into (2.18), neglecting all terms of higher order than (a') 
and using 

a2 
3 (XjXJ = - Sjl, (4.6) 

we have (4.7) 

i.e. 

where K~ is a constant determined by the basic vectors a,, a, and a3: 

As a typical case we consider the cubic array of spheres. Now, there are three 

(1) Simple cubic lattice (s.c.L) 
types of cubic lattice: 

a3 

(2) Body-centred cubic lattice (B.c.L) 

a 2 i  a, = &h { i - : :  :: -iii, ro = Qh3, 
a3 ( 1, - 1 ,  
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(3) Face-centred cubic lattice (F.c.L) 

bl ( 1, 1, - 1 )  
, 70 = 1h3, b, 

a3 b3 

According to their symmetry with respect to three co-ordinates axes it is obvious 
that 

- (a2',) - -  - (%) - (2) = +(As,> = +A&> ax! ax; (4.13) 

and Cll = cg2 = c33 = 66. (4.14) 

Introducing (4.14) into (4.9) we obtain 

K, = K, = K~ = c = 
r+O 

(4.15) 

The values of c have been calculated by many authors (e.g. Emersleben 1923) in 
connexion with the determination of the Madelung constants, and are given in 
table 1. In  this table the values of ca are also given in terms of the volume 
concentration of spheres : 

(4.16) 

ch ca/+'c, bha 

S.C.L 2.8373 1.7601 0.19457 

F.C.L 4.584, 1.791, 0.213, 
B.C.L 3-639, 1.791, 0-120, 

TABLE 1 

5. Refinement of the approximation in the case of cubic arrays 
In  order to refine the rough approximation in the previous section we have only 

to determine the coefficients of the complementary functions which are derived 
from S, and S, by successive differentiation and which are to be added to (2.18). 

As one of the most simple cases we consider the case of the cubic array. Let us 
assume that the mean flow is parallel to the x,-axis without loss of generality. In  
this case we can take 

-(gradp)j = 4 1  ---ggradG--, 3x1 

477 ax, 
(5.4) 

21 -2 
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making use of (2.18) and (2.19) and taking into account the symmetry, where 
G and H stand for differential operators 

A,, and Bmnp are symmetric with respect to n and p ,  and some of them can be 
taken to be zero on account of the relations (2.21) and (2.22). 

In  particular, U,, A,,, and Boo, are intimately related with the mean velocity U 
and the force F acting on a sphere as follows. The force acting on a sphere is shown 
to be 

Fl = A,,, = A ,  F2 = 0, F, = 0, (5.6) 

by comparison of (5.4) and (2.19). On the other hand, the mean velocity U in the 
direction of x,-axis is given by the surface integral 

taken over a surface which is bounded by a rectangle of area h x h perpendicular 
to 2,-axis and is outside every sphere. Making use of the relations 

----(?+!?)#,, a v ,  - 4n 
ax; ax; ax, 

for r + r,, derived from (2.21) and (2.22) and the periodicity of G[aSl,2/azj] and 
H[aX,,,/ax,] (j = 2 ,3 )  with respect to xi, we obtain 

B 

W O  

U = -1 1 *h s” 
dx2dx, = Uo-- ( B  = Boo,,). (5.10) 

h2 -+h -+h 

We note that the mean flow is not U,, but has an additional term which is shown 
to be of the order of c, (see (5.22)). The x2- and x,-components of the mean 
velocity are easily proved to be zero. 

Let us proceed to the determination of these constants from the boundary 
condition (4.1) on a sphere of small radius a. 

For this purpose we expand S, - l / r  and 8, - &r in spherical harmonics with 
their common centre at  r = 0 as follows: 

(5.11) 
1 271 m m l + n  

r 370 n=2 m=O 

r c. 71r4 00 m S n  

8, = - - c + - r2 + 

8, = - - c 2 - - r 2 + - +  C 2 (bnVt+Cnmr2) Y$i~(x1,x2,x3), (5.12) 

anm Y$;(x,, x2, x 3 )  

2 6 3 b o  n=2 m=o 

where use is made of Hobson’s theorem (1931, p. 161), together with the cubic 
symmetry of these functions, and 

Yz(xl, x2, x3) = r n e ( c o s  8) cosm#, (5.13) 

(6.14) with x1 = r cos e, x2 = r sin 6 cos 6, x3 = r sin 0 sin 6. 
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Also, c and c2 are given by (4.2'), (4.3') and table 1, and 
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E m .  22y 2%) ! (2n - am) ! 
bnm = (4n)! (2n+4m)! 

(e,  = 1, E ,  = 2 for nz > 0), (5.15) 

- (5.16) 

Introducing into (4.1) the expressions (5.1) to (5.3) with (5.6) and (5.10) to 
(5.12) and equating to zero the coefficients of Po,P2, . . . in v1 and Pk e@, . . . in v2 + iv, 
respectively we obtain the following simultaneous equations 

1 

2 (4n + 3) anm* 
a",, = 

= 47rpU, (5.17) 

[&- (&,+126)a2+0(a4)] F+[;+o(~z)] B + [ ~ + o ( ~ ~ ) ] A , , , + o ( ~ ~ )  = 0, 

(5.18) 

... ... ... 
b = b2,. 

Comparing the main terms in these equations we see a t  once that, at  most, 

F = O(a), B = O(u3), A,, = O(a4(mfn+p)f1 ), R,,, = o(u4(m+n+p)+3). (5.20) 

Solving (5.17) to (5.19), we obtain 

A,,, = +c ba5F + O(aB), (5.21) 

F = 6npaU/Q, 
where 

(5.22) 

(5.23) 

(5.23') 

and 

(5.24) 

The numerical values of b are given in table 1. In  terms of c, equations (5.23') are 
rewritten as follows: 

(5.25) I 1 - 1.7601 Jc7 +c, - 1.5593 C: + . . . (s.c.L.) 
1- 1.7918Jc,+c7-0.3292c2,+ ... (B.c.L.) . 
1-1.791,~c,+c7-0.302,c2,+ ... (F.c.L.) 

Making use of (5.25) we can calculate the values of F for three types of cubic 
lattice, the results being shown in table 2 and figure 1, where O(c:) stands for the 
values calculated by retaining the terms of the order of c;. 
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It is found that the values of F are larger than 67rpaU, i.e. the value for an 
isolated sphere, and do not differ much for the three types of cubic lattice, 
provided that the values of c, are the same and small. This conclusion will be 
applicable also to other types of lattice. 

4% 
S.C.L 0 

0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 

B.C.L 0 
0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 

F.C.L 0 
0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0-60 
0.70 

alh 
0~00000 
0.03102 
0.06204 
0.12407 
0.18611 
0.24814 
0.3 1018 
0.37221 
0~00000 
0.02462 
0.04924 
0.09847 
0.14771 
0-19695 
0.24619 
0.29542 
0.34466 
0~00000 
0.01954 
0.03908 
0.07816 
0.11724 
0-15632 
0.19540 
0.23448 
0.27356 

Q : O(&) 
1~0000 
0.9120 
0.8240 
0.6480 
0.4720 
0.2960 
0.1199 

1~0000 
0.9104 
0.8208 
0.6416 
0.4625 
0,2833 
0.1041 

- 

- 
- 

1~0000 
0.9104 
0.8208 
0.6417 
0.4625 
0.2833 
0.1042 
- 
- 

TABLE 2 

Q : W,) 
1~0000 
0.9121 
0.8250 
0.6560 
0.4990 
0.3600 
0.2449 
0.1599 
1~0000 
0.9105 
0.8218 
0.6496 
0-4895 
0-3473 
0.2291 
0.1409 
0.0888 
1~0000 
0-9105 
0.8218 
0.6497 
0.4895 
0.3473 
0.2292 
0.1410 
0.0888 

Q : O(C:) 
1~0000 
0.9121 
0-8250 
0.6559 
0.4978 
0.3536 
0.2206 
0.0872 
1~0000 
0.9105 
0.8218 
0.6496 
0.4892 
0.3459 
0.2240 
0.1256 
0.0500 
1~0000 
0.9105 
0.8128 
0.6496 
0.4893 
0.3461 
0.2244 
0.1269 
0.0533 

Q-l: O(c:) 
1-0000 
1.096 
1.212 
1.525 
2-009 
2.83 
4.5 

1~0000 
1.098 
1-217 
1.539 
2.044 
2.89 
4.47 
8.0 

1-0000 
1.098 
1.217 
1.539 
2.044 
2-89 
4-47 
7.9 

12 

20 

19 

6. Two-dimensional case 

radius r = J(x: + x;) = a, can be treated in a similar manner. 
The two-dimensional case, i.e. the flow past an array of circular cylinders of 

Putting h = 4 in (3 .5) ,  etc., we obtain, for example, 

(6.1) 8, = - 0 1  = C #-1 C' e-Zdk.r)q&(r&Z) 
T ~ o  n 

= -log(m2/a)-C+O(r2), 

(6.1') 
a 

70 n-+O 7",k+O 
C = y+-- C' $-1 ~ -- 2' $o(mak2), 

n(r - rn)2 - 5 + !? x' e-2niOt.r) 41(n&2)] , (6.2) 
2 T ~  7ok+0 

# f-72 

'- 4~37, 47r 

2 + 0 ( r 2 ) ,  (6.3) 8, - __ = ___ = - 8 log - -2 - - + z; azx, aw, m2 x2 y 
ax; ax; a r2 2 

(6.3') 
U [ r:) 2 7 r ~ 2  a + @ 7o x' It k; $l(7rctk2). C , = + Z '  g-1 - -- 
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From these results we can calculate the drag per unit length of a circular cylinder 
in the array: 

F A 4 7 ~ 1 ~ ~ 0 1  . - 8 V V O l  
(s, - aw2/ax;) - log (./mas) - 1 - + 2c2. 

In  particular, for a square array of period h we get the formula 

(6.4) 

cs 
FIGURE 1 

where we have put a! = 70 = h2 and used the relation 

Recently the author treated the same problem by making use of elliptic 
functions and obtained a formula corresponding to (6.5) in the form: 

F -  4 v U 1  
- log (h/a) - E + (ma2/h2) + 0 ( ~ 4 p 4 )  ' 

co " 0 1  
where 6 =log (1 -e -2nT)2]+$-&r+~n  ~ _- - 1.3105 .... (6.8) 

n=l sinh2 n m  
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It will be seen that the two formulae (6.5) and (6.7) are in perfect agreement with 
each other to the order here considered. 

This problem was suggested by Prof. KO Tamada. The author wishes to express 
his cordial thanks to Prof. Tamada, Prof. Isao Imai, and Prof. Susumu Tomotika 
for their continual encouragement and helpful discussions throughout this work. 
The author’s thanks are also due to the Japan Ministry of Education for a grant 
in aid for fundamental scientific research. 
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